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Abstract: In this study we employ a near-infrared fluorescence lymphatic imaging (NIRFLI) 
technique to longitudinally image spatial and temporal changes in the lymphatics in mice 
bearing vascular endothelial growth factor (VEGF)-C overexpressing B16F10 (VEGF-C-
B16F10) or mock-transduced B16F10 (mock-B16F10) melanoma tumors. Our NIRFLI data 
show that ICG-laden lymph accumulates into a VEGF-C-B16F10 tumor compared to mock-
B16F10 at 3 days post implantation, presumably due to increased lymphatic vessel 
permeability. Quantification shows a significantly greater percentage of ICG-perfused area in 
VEGF-C-B16F10 (7.6 ± 2) as compared to MOCK-B16F10 (1 ± 0.5; p = 0.02), which is also 
confirmed by quantification of the lymphatic leakage of evans blue dye (optical density at 
610nm; VEGF-C-B16F10, 10.5 ± 2; mock-B16F10, 5.1 ± 0.5; p = 0.009); thereafter, 
lymphatic leakage is visualized only in the peritumoral region. Our imaging data also show 
that anti-VEGF-C treatment in VEGF-C-B16F10 restores normal lymphatic vessel integrity 
and reduces dye extravasation. Because NIRFLI technology can be used to non-invasively 
detect lymphatic changes associated with cancer, it may provide a new diagnostic to assess 
the lack of lymphatic vessel integrity that promotes lymphovascular invasion and to assess 
therapies that could arrest invasion through normalization of the lymphatic vasculature. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Tumor-associated lymphatic vessel networks undergo significant changes in response to 
tumor cells, such as lymphatic vessel dilation and leakiness, and sprouting from pre-existing 
vessels [1,2]. These structural features of tumor lymphatic vessels might make them more 
susceptible for invasion by malignant cells, resulting in the increased probability of lymphatic 
metastasis [2]. One of the key lymphangiogenic factors for these changes is vascular 
endothelial growth factor (VEGF)-C, which has been shown to be critical for the proliferation 
of lymphatic endothelial cells (LECs) and initial lymphatic vessel sprouting [2]. 

VEGF-C binds to VEGF receptor (VEGFR)-3, which is predominantly expressed on 
lymphatic vessels [3]. Overexpression of VEGF-C in cancer cells induces tumor 
lymphangiogenesis and enhances tumor spread to the regional draining LNs in several mouse 
models of cancer [4]. Previous studies demonstrate that mice bearing VEGF-C 
overexpressing tumor show an increase in regional LN metastasis, retrograde lymph flow 
direction, and an increased number of dilated but functional peri-tumoral lymphatic vessels 
[5,6]. None of these studies provides longitudinal data showing when and how structural 
changes of the lymphatics occur in response to VEGF-C overexpressing tumor growth. 
Moreover, despite the importance of lymphatic vascular permeability in pathophysiological 
conditions [7], there are limited techniques to image lymphatic leakage due to enhanced 
permeability in vivo. 

Recently, we developed non-invasive, dynamic near-infrared fluorescence lymphatic 
imaging (NIRFLI), and translated it within investigational studies in the clinic to examine 
lymphatic function of cancer patients and survivors using a microdose of fluorescent imaging 
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agent [8]. In this study, we investigate how VEGF-C impacts the lymphatics imaged by 
NIRFLI, longitudinally assessing the lymphatics in the hindlimb of mice where VEGF-C 
overexpressing B16F10 (VEGF-C-B16F10) or mock-transduced B16F10 (MOCK-B16F10) is 
implanted. Our data demonstrates that dynamic and longitudinal NIRFLI assessment of the 
lymphatic system may provide a companion diagnostic for therapies that seek to interrupt 
metastasis through arresting lymphangiogenesis. 

2. Materials and methods 

2.1 Cells and mice 

VEGF-C- and mock-B16F10 cells were kindly provided by Dr. Timothy Padera at 
Massachusetts General Hospital and Harvard Medical School. To transfect VEGF-C- and 
MOCK-B16F10 cells expressing iRFP gene reporter (iRFP-VEGF-C-B16F10 and iRFP-
MOCK-B16F10, respectively), cells were cultured as monolayer in DMEM-F12/10% fetal 
bovine serum (FBS, BioExpress, Kaysville, UT, USA). At near confluency, the culture was 
transfected with piRFP plasmid (Addgene, Cambridge, MA, USA) by Lipofectamine 2000 
(Invitrogen, Grand Island, NY, USA) as suggested by the manufacturer. Transfected cells 
were grown under 0.8 mg/ml G418 selection in DMEM-F12/10% FBS growing medium. 
Transfected cells that survived the antibiotic selection were then sorted through flow 
cytometry outfitted with 690 nm/730 nm (excitation/emission) wavelengths to obtain the 
population of high iRFP expressers. 

Six to eight week old female C57BL6 mice (Charles River, Wilmington, MA) were 
housed and fed sterilized pelleted food and sterilized water at the Brown Foundation Institute 
of Molecular Medicine at the University of Texas Health Science Center – Houston (UTHSC-
H). All experiments were performed in accordance with the guidelines of the Institutional 
Animal Care and Use Committee of UTHSC-H. 

2.2 Blocking antibody and treatment 

A neutralizing rat monoclonal antibody specific for mouse VEGFR-3 (n = 6; mF4-31C1; 800 
μg/mouse; ImClone Systems Inc., New York, NY) or control rat IgG (n = 5; 800 μg/mouse; 
Antibodies incorporated, Davis, CA) was administered at the time of tumor cell injection and 
every second day. 

2.3 In vivo fluorescence imaging 

Mice were imaged for baseline information with i.d. injection of 10 μl of 645 μΜ of ICG 
(Akorn, Inc. Buffalo Grove, IL) using 31 gauge needles (BD Ultra-FineTM II Short Needle, 
Becton and Dickinson Medical, Franklin, NJ). After baseline imaging, iRFP expressing or 
non-expressing VEGF-C- or mock-B16F10 cells (5 x 105) in 10 μl PBS were inoculated 
intradermally into the left hindlimb and thereafter, tumor volume was longitudinally 
measured using a digital caliper. Tumor volume (mm3) was calculated using the following 
formula: 0.52 x D12 x D2, where D1 and D2 are short and long tumor diameters, respectively. 
NIRFLI with i.d. injection of 10ul of ICG was performed longitudinally at 3, 7, and 10 days 
post tumor implantation (p.i.). Therefore, mice were injected four times with ICG (at baseline, 
and day 3, 7, and 10). In addition, in order to explore whether increased vessel permeability 
seen with ICG was evident with high MW vascular agents known not to extravasate from 
intact vasculatures, a subset of mice (n = 2) were injected with 10 μl (10 mg/ml) of FITC-
Dextran (2M Da; Sigma) several millimeters proximally away from the ICG injection site at 3 
days p.i.. For imaging FITC-Dextran, an Argon-Krypton laser system (50mW, 488nm) was 
used to illuminate mice. Bandpass (510nm center wavelength) and holographic filters (488nm 
center wavelength) were used to collect re-emitted fluorescence light and reject the excitation 
light, respectively. A series of sequential NIRF and FITC-Dextran images were acquired with 
200ms exposure time immediately before and for up to 20 min after i.d. injection. NIRF and 
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VEGF-C-B16F10 or mock-B16F10. Dynamic NIRFLI at 3 days p.i. of tumor cells revealed 
extravasation of ICG tracer into VEGF-C-B16F10 as evidenced by strong ICG fluorescence 
in the tumor (arrow in Fig. 1(B)) and the fluorescent intensity profiles in the tumor over time 
(Fig. 1(I)). We observed this feature in all VEGF-C-B16F10 bearing mice where fluorescent 
lymphatic vessels pass through the tumor after i.d. injection to the base of the tail. ICG-laden 
lymph leaked out of lymphatic vessels at the tumor margin and diffused into the tumor as 
shown in Visualization 1. Magnified fluorescent images showed that VEGF-C-B16F10 
draining lymphatic vessels gradually dilated during tumor progression (insets in Figs. 1(B) – 
1(D)). In contrast, we could not observe extravasation of ICG into mock-B16F10 as seen in 
VEGF-C-B16F10. ICG-laden lymph drained along the lymphatic vessels in the skin above 
mock-B16F10 at 3 days p.i. (Fig. 1(F)) and stained around the tumor margin at later time 
points (Figs. 1(G) and 1(H)). Quantification of the perfused area shows a significant 
difference between VEGF-C- and MOCK-B16F10 (Fig. 1(J)). Lymphatic permeability assay 
showed significant leakage of EBD in VEGF-C-B16F10 as compared to MOCK-B16F10 
(Fig. 2(A)), confirming the in vivo imaging data shown in Fig. 1. There was no significant 
difference in tumor growth rate between VEGF-C- and mock-B16F10 (Fig. 2(B)). 

 

Fig. 2. A. Quantification of tissue retention of EBD normalized to tissue weight. * p = 
0.009.  B. In vivo growth of VEGF-C-B16F10 (circle; n = 8) and MOCK-B16F10 (square; n = 
11). 

3.2 VEGF-C overexpression also results in leakage of high molecular weight FITC-
Dextran into VEGF-C-B16F10 at early post implantation 

 

Fig. 3. White and fluorescence images in mice (n = 2 for each tumor) at 3 days p.i. of VEGF-C 
or MOCK-B16F10 following FITC-Dextran and ICG. The insets show magnified fluorescent 
images of the red rectangles. A dashed red circle in the inset indicates the location of a tumor. 
The injection sites were covered. Scale, 1mm. 

Molecular weight can be a key factor in extravascular distribution out of the leaky lymphatic 
vessels. Therefore, we tested if lymphatic vessel leakage as shown from ICG in Fig. 1 is still 
observed using the high molecular weight FITC-Dextran (MW 2,000 KDa), which is largely 
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molecular weight, since we also observed extravasation of 2000 kDa FITC-Dextran. FITC-
Dextran has been used for fluorescence microlymphangiography (FML) in tumor-associated 
lymphatics [5]. Although FML is useful to understand changes in lymphatic capillaries and 
cutaneous lymphatic vessels, clinical application is limited owing to the limited penetration 
depth of light at visible wavelengths and tissue scattering, and the inability to visualize deeper 
collecting and conducting lymphatic vessels. 

We show that ICG leakage in VEGF-C expressing tumors occurred at early stages (Fig. 
1). When solid tumors grow, interstitial fluid pressure (IFP) is elevated compared with normal 
tissues due to mechanical stress generated by tumor cell growth [15]. Although we did not 
measure IFP at 3 days p.i. (as small as 8 mm3 in tumor volume), previous data showed that 
IFP in VEGF-C overexpressing tumors is higher than that in normal tissues, but similar to that 
in control tumors [5]. Therefore, extravasation of ICG-laden lymph in early stage VEGF-C-
B16F10 tumors presented in this study may be due to destabilization of the lymphatic vessel 
wall by tumor-secreted VEGF-C, while anti-VEGFR-3 treatment significantly normalized 
these vessels. 

In conclusion, we demonstrated our ability to image architectural changes of tumor-
associated lymphatics in vivo during tumor progression with i.d. injection of ICG. Increasing 
the permeability of the lymphatic vasculature is one of the hallmarks of cancer and 
inflammation. Therefore, a better understanding of changes to lymphatic structure and 
drainage patterns in disease may provide new strategies to improve drug exposure to targets 
in the lymphatic system and enhance therapeutic utility. Since technology is already used 
within investigational studies in the clinic to image the lymphatic system longitudinally [16], 
NIRFLI may also provide information in lymphatic response to anti-VEGF-C and other 
therapies. 
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